Biomedical Colloid and Interface Lab

Yoonjee Park, Ph.D.

Nithianandam, P., Das, D., Park, Y. "Effect of Surfactant-Keratin on Dehydration of Stratum Corneum Substitute", Langmuir, 2020.

Phase-transition of the nanodroplets by pulsed laser

Phase-transition of the nanodroplets observed with an inverted microscope. The schematic is the optical setup (AOM: acousto-optic modulator; PMT: photomultiplier detector).

Fs laser: 980 nm, 80 mW, single shot 100 fs (DIC/Fluorescence)

Drug delivery in in vitro angiogenesis model

Yuan et al. 2019 Colloids and Surfaces B: Biointerfaces

Theoretical T_{ph} from heat transfer model considering Peak intensity

- Initial temperature rise is governed by peak intensity.
- Predicted the threshold ΔT for vaporization: PF5 \approx 30 K, PF6 \approx 60 K
- At 80 MHz, heat accumulation is not significant.

Zhang et al. 2019 Journal of Physical Chemistry A

Light-Activatable Liposomes as a Drug Release System

• Drug release is proportional to the number of irradiation cycles.

Das, S., Lazenby, R., Yuan, Z., White, R., Park, Y. Langmuir 2020.

Effect of liposomes composition on nano-structural alteration

- With cholesterol liposomes : irreversible change in nano structure after laser irradiation: fluidic liposomes bi-layer
- Without cholesterol liposomes: No change in nano-structure: rigid liposomes bi-layer

Size-Exclusive Nanoporous Dose-Controllable Drug Implant

24 hr-passive release test

He, X., Yuan, Z., Kao, W., Miller D., Li, S., Park, Y. ACS Applied Bio Materials (2020)

In vivo drug release by laser

No laser

Dye/drug released

Drug Release Kinetics of Our Implant

- 1 mg: first-order kinetics
- 0.5 mg: zero-order kinetics

• Improve the kinetics by using a different laser source and avoid excess heat affecting the surrounding temperature.

In vitro Skin Stratum Corneum Model

- After washing with cleansers which contain surfactants, our skin 'feels' hydration (or dehydration), or smoothness (or tightness).³
- The underlying mechanisms of action of various cosmetic chemicals <u>at the molecular level</u> are seldom clearly defined.
- We hypothesize that surfactant adsorbs on SC, especially keratin filaments, and accelerates water loss from the skin because it alters the keratin structure.

2. Bouwstra et al., J. Invest. Dermatol. 2003, 120, 750-758

SCS liposomes and bilayer formation

> More than 50 kinds of lipid molecules are present in human stratum corneum.

Dynamic Light Scattering data

Non-keratinized and keratinized SCS liposomes	keratinized SCS liposomes
93.7±1.5 nm	122.9±0.8 nm

Molecular Structure of SCS: X-ray Scattering Data

Lateral Packing: GIWAXS (Grazing-Incidence Wide-Angle X-ray Scattering)

SCS liposomes and bilayer formation

Enhanced dark field images

For the short-term, keratin accelerates evaporation, whereas for the long-term, keratin protect water from evaporating.

Summary

- Dehydration
- Penetration
- Deposition

Of surfactants and moisturizers on and into the skin at the molecular level.

lipid lamellae

corneocyte

Summary

- Keratin plays an important role on dehydration rate, both from the surface and the stratum corneum lipid layers, likely due to water binding sites in keratin coil structures.
- Surfactant accelerates water loss from the skin because it changes hydrophilicity/hydrophobicity.

Pham et al. 2016 JCR Chemical penetration enhancers in stratum corneum — Relation between molecular effects and barrier funct